Package: soc.ca 0.8.1

Anton Grau Larsen

soc.ca: Specific Correspondence Analysis for the Social Sciences

Specific and class specific multiple correspondence analysis on survey-like data. Soc.ca is optimized to the needs of the social scientist and presents easily interpretable results in near publication ready quality.

Authors:Anton Grau Larsen and Jacob Lunding with contributions from Christoph Ellersgaard and Stefan Andrade

soc.ca_0.8.1.tar.gz
soc.ca_0.8.1.zip(r-4.5)soc.ca_0.8.1.zip(r-4.4)soc.ca_0.8.1.zip(r-4.3)
soc.ca_0.8.1.tgz(r-4.4-any)soc.ca_0.8.1.tgz(r-4.3-any)
soc.ca_0.8.1.tar.gz(r-4.5-noble)soc.ca_0.8.1.tar.gz(r-4.4-noble)
soc.ca_0.8.1.tgz(r-4.4-emscripten)soc.ca_0.8.1.tgz(r-4.3-emscripten)
soc.ca.pdf |soc.ca.html
soc.ca/json (API)
NEWS

# Install 'soc.ca' in R:
install.packages('soc.ca', repos = c('https://rsoc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rsoc/soc.ca/issues

Datasets:

On CRAN:

4.44 score 14 stars 49 scripts 284 downloads 57 exports 136 dependencies

Last updated 8 months agofrom:753cee0368. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 13 2024
R-4.5-winERROROct 13 2024
R-4.5-linuxERROROct 13 2024
R-4.4-winERROROct 13 2024
R-4.4-macERROROct 13 2024
R-4.3-winERROROct 13 2024
R-4.3-macERROROct 13 2024

Exports:%>%add.categoriesadd.densityadd.ellipseadd.indadd.quadrant.labelsadd.to.labelassign.labelaverage.coordbalancebreakdown.variancecontributioncowboy_cutcreate.quadrantcsa.allcsa.measuresellipsesexportexport.labelextract_casesextract_catsextract_indextract_modextract_supget.category.relationsheadingsind.explorerindicatorindicator.to.longinvertmap.activemap.addmap.arraymap.ca.basemap.csa.allmap.csa.mcamap.csa.mca.arraymap.ctrmap.densitymap.ellipsemap.ellipse.arraymap.indmap.modmap.pathmap.selectmap.supmca.eigen.checkmca.triadsmin_cutprint.soc.mcaprune.mcarandomize.mcasoc.csasoc.mcasupplementary.categoriessupplementary.individualsvariance

Dependencies:abindaskpassbackportsbase64encbootbroombslibcachemcarcarDatacheckmatecliclustercolorspacecommonmarkcowplotcpp11crayoncrosstalkdata.tableDerivdescriptiodigestdoBydplyrDTellipseemmeansestimabilityevaluateFactoMineRfansifarverfastmapflashClustflextablefontawesomefontBitstreamVerafontLiberationfontquiverforcatsFormulafsGDAtoolsgdtoolsgenericsggplot2ggppggrepelgluegridExtragtablehighrhtmlTablehtmltoolshtmlwidgetshttpuvigraphisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4lubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivofficeropensslpbkrtestpillarpkgconfigplyrpolynompromisespurrrquantregR6raggrappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrstudioapisassscalesscatterplot3dshinysourcetoolsSparseMstringistringrsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttimechangetinytexutf8uuidvctrsviridisLitewithrxfunxml2xtablextsyamlzipzoo

Readme and manuals

Help Manual

Help pageTopics
Add a layer of cases (individuals) to an mca mapadd.cases add.ind
Add a layer of categories (modalities) to an mca mapadd.categories
Add a new layer of points on top of an existing plot with output from the min_cut functionadd.count
Add a layer with density curves to an mca map.add.density
Add a layer with concentration ellipses to an mca map.add.ellipse
Annotate labels to the quadrants of an MCA or any ggplot2 based quadrant plot.add.quadrant.labels
Add values to labeladd.to.label
Assign new labelsassign.label
Average coordinatesaverage.coord
Contribution balancebalance
Breakdown of variance by groupbreakdown.variance
Summaries of contribution valuescontribution
Cut ordinal variablescowboy_cut
Create categories according to the quadrant position of each individualcreate.quadrant
Multiple Class Specific Correspondence Analysis on all values in a factorcsa.all
CSA measurescsa.measures
Directors datasetdirectors
Calculate concentraion ellipsesellipses
Export results from soc.caexport
Exports the labels of a soc.ca object into a csv file.export.label
Extract individualsextract_cases extract_ind
Extract coordinates for the categories from an soc.mcaextract_cats extract_mod
Extract supplementary categories from an soc.mcaextract_sup
Get and calculate the relationships and oppositions between each pair of categoriesget.category.relations
Calculate contributions per headingheadings
Explore the cloud of individualsind.explorer
Indicator matrixindicator
Pivot the indicator matrix from an MCA to long formatindicator.to.long
Invert the direction of coordinatesinvert
Map the active modalitiesmap.active
Add points to an existing map created by one of the soc.ca mapping functions.map.add
Array of mapsmap.array
Create the base of a soc.ca mapmap.ca.base
Array of several CSA mapsmap.csa.all
Map the coordinates of the individuals in a CSA and its MCAmap.csa.mca
CSA-MCA arraymap.csa.mca.array
Map the most contributing modalitiesmap.ctr
Density plot for the cloud of individualsmap.density
Concentration ellipsesmap.ellipse
Ellipse arraymap.ellipse.array
Map the individuals of a soc.ca analysismap.ind
Map all modalitiesmap.mod
Map path along an ordered variablemap.path
Map select modalities and individualsmap.select
Map the supplementary modalitiesmap.sup
MCA Eigenvalue checkmca.eigen.check
Compare MCA's with triadsmca.triads
Cut a continuous variable into categories with a specified minimummin_cut
Moschidis examplemoschidis
The Field of the Danish Power Elitepe13
French Political Space examplepolitical_space97
Print soc.ca objectsprint.soc.mca
Remove unnecessary variables from an MCAprune.mca
Create a randomized mca on the basis of an existing mcarandomize.mca
Soc.ca a package for specific correspondence analysissoc.ca
Class Specific Multiple Correspondence Analysissoc.csa
soc.mca 'soc.mca' performs a specific multiple correspondence analysis on a data.frame of factors, where cases are rows and columns are variables.soc.mca
Supplementary coordinates for a data.frame of factorssupplementary.categories
Add supplementary individuals to a result objectsupplementary.individuals
Taste datasettaste
Convert to MCA class from FactoMineRto.MCA
Variance tablevariance
Check if data is valid for soc.mcawhat.is.x